4.7 Article

Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 424, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.127640

关键词

Tetracycline; Encapsulated Fe 0; CO; Density function theory; Toxicology

资金

  1. National Natural Science Foundation of China [12075147, 12075152]

向作者/读者索取更多资源

Tetracycline (TC) degradation in water was successfully achieved using carbonyl-modified carbon-coated Fe0 as an activator for peroxymonosulfate (PMS). The Fe0 continuously activated PMS, while carbon facilitated electron transportation and the carbonyl group on the carbon surface acted as the active site. This study demonstrates the promising potential of this novel material for removing antibiotics from water.
Tetracycline (TC) is a commonly used antibiotic that has gained wide spread notoriety owing to its high environmental risks. In this study, rich carbonyl-modified carbon-coated Fe0 was obtained by pyrolysis of MIL-100 (Fe) in an Ar atmosphere, and used to activate peroxymonosulfate (PMS) for the degradation of tetracycline in water. The roles of Fe0, carbon and surface carbonyl on PMS activation were investigated. Fe0 continuously activated PMS, acted as a sustained-release source of Fe2+, and could effectively activate PMS to produce SO4 center dot O2 center dot and center dot OH. Carbon was found to do responsible for electron transportation during the activation of PMS and slow down the oxidation of Fe0. The carbonyl group on the carbon surface layer was the active site of 1O2, which explains the enhanced performance for TC degradation. When Ca = 0.1 g/L and C0 = 0.4 mM, TC degradation rate reached 96%, which was attributed to the synergistic effect of radicals (i.e., SO4 center dot 2 center dot center dot OH) and nonradical (i.e., 1O2). Finally, the degradation pathway was proposed by combining density functional theory (DFT) calculations with liquid chromatography-mass spectrometry (LC-MS), toxicities of the intermediate products were also evaluated. All results show that carbonyl-modified carbon-coated Fe0 possesses promising capacity for the removal of antibiotics from water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据