4.7 Article

Co3O4@TiO2@Y2O3 nanocomposites for a highly sensitive CO gas sensor and quantitative analysis

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 422, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126880

关键词

Nanocomposites; CO; Gas sensor; Quantitative model

资金

  1. National Natural Science Foundation of China [51907165]
  2. Graduate Scien-tific Research and Innovation Foundation of Chongqing [CYB21111]

向作者/读者索取更多资源

An experimental platform was built to verify the excellent properties of a composite sensitive material, and a gas sensing data prediction model was established to predict carbon monoxide concentration successfully.
In order to predict the early failure of organic insulator, Co3O4@TiO2@Y2O3 nanocomposites was prepared and characterized (XRD, SEM, EDS, FTIR, UV-vis-NIR, XPS) to detect decomposition CO gas. A simple experimental platform was built to verify the excellent adsorption, stability, selectivity and repeatability of the composite. Then, the mechanism of adsorption enhancement was analyzed by heterojunction. Aiming at 170 sets of gas sensing data sets, Successive Projections Algorithm (SPA) was used to extract data features, and grey wolf optimization vector machine regression (GWO-SVR) model was established to predict carbon monoxide concentration. The correlation coefficient (R-P), root mean square error (RMSEP) and calculation time of prediction set were 99.3025%, 0.0418 and 1.47 s, respectively. Therefore, the combination of the superior properties of a composite sensitive material and the small sample quantitative prediction model is a promising method for gas sensors in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据