4.7 Article

Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 420, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126651

关键词

Herbicide; AMPA; Sarcosine; Degradation; C-P lyase; Periphyton

资金

  1. French National Research Agency (ANR) [ANR-16-CE32-0001]

向作者/读者索取更多资源

The study investigates the individual degrading behavior of bacterial strains isolated from glyphosate-degrading stream biofilms, revealing different and complementary glyphosate degradation pathways for bacteria co-existing in stream biofilms. Different bacterial strains showed variations in the degradation speed, pathway utilization, and accumulation of degradation products for glyphosate and its metabolite AMPA.
The present study investigates the individual degrading behavior of bacterial strains isolated from glyphosatedegrading stream biofilms. In this aim, biofilms were subjected to enrichment experiments using glyphosate or its metabolite AMPA (aminomethyl phosphonic acid) as the sole phosphorus source. Five bacterial strains were isolated and taxonomically affiliated to Ensifer sp. CNII15, Acidovorax sp. CNI26, Agrobacterium tumefaciens CNI28, Novosphingobium sp. CNI35 and Ochrobactrum pituitosum CNI52. All strains were capable of completely dissipating glyphosate after 125-400 h and AMPA after 30-120 h, except for Ensifer sp. CNII15 that was not able to dissipate glyphosate but entirely dissipated AMPA after 200 h. AMPA dissipation was overall faster than glyphosate dissipation. The five strains degraded AMPA completely since formaldehyde and/or glycine accumulation was observed. During glyphosate degradation, the strain CNI26 used the C-P lyase degradation pathway since sarcosine was quantitatively produced, and C-P lyase gene expression was enhanced 30x compared to the control treatment. However, strains CNI28, CNI35 and CNI52 accumulated both formaldehyde and glycine after glyphosate transformation suggesting that both C-P lyase and/or glyphosate oxidase degradation pathways took place. Our study shows different and complementary glyphosate degradation pathways for bacteria co-existing in stream biofilms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据