4.7 Article

Modelling botanical biofiltration of indoor air streams contaminated by volatile organic compounds

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 422, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126875

关键词

Botanical biofilter; Indoor air quality; Reactive transport modelling; Volatile organic compounds; Global sensitivity analysis

资金

  1. PNAT SRL

向作者/读者索取更多资源

Botanical filtration is an effective biological method for removing hazardous VOCs from air streams. The study evaluated the applicability of a modeling scheme to systems with a botanical compartment, and found that parameters like mass transfer coefficient and biofilm coverage significantly influence the biofilter responses. The model was successfully validated against data from a pilot-scale installation, indicating its feasibility for systems with a botanical compartment under certain assumptions.
Botanical filtration is a biological-based treatment method suitable for removing hazardous volatile organic compounds (VOCs) from air streams, based on forcing an air flow through a porous substrate and foliage of a living botanical compartment. The pathways and removal mechanisms during VOC bioremediation have been largely investigated; however, their mathematical representation is well established only for the non-botanical components of the system. In this study, we evaluated the applicability of such a modelling scheme to systems which include a botanical compartment. We implemented a one-dimensional numerical model and performed a global sensitivity analysis to measure the input parameters influence on the transient and steady biofilter responses. We found that the most sensitive parameters on the transient-state behaviour were the mass transfer coefficient between gas and solid surfaces, and the fraction of solid surfaces covered by the biofilm; the steady-state response was primarily influenced by the biofilm specific surface area and the fraction of surfaces covered by the biofilm. We calibrated the identified set of parameters and successfully validated the model against data from a pilot-scale installation. The results showed that the application of the model to systems with a botanical compartment is feasible, although under a strict set of assumptions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据