4.7 Article

Nanofibrous membranes comprising intrinsically microporous polyimides with embedded metal-organic frameworks for capturing volatile organic compounds

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 424, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.127347

关键词

UiO-66; Mixed matrix membrane; Polymers of intrinsic microporosity; Electrospinning; Nanofiber; Mask

资金

  1. King Abdullah University of Science and Technology (KAUST)
  2. Hungarian Government [VEKOP-2.1.1-15-2016-00114]
  3. European Union [VEKOP-2.1.1-15-2016-00114]

向作者/读者索取更多资源

The study demonstrated the successful fabrication of nanofibrous air-filtration membranes using intrinsically microporous polyimide with metal-organic frameworks (MOFs), showing efficient removal of VOCs from air. Different polyimides with varying surface areas were synthesized, and the impact of porosity on the sorption kinetics of nanofibers was investigated. Embedding Zr-based MOFs into nanofibers greatly improved the sorption performance for both polar and non-polar VOCs, with molecular modeling studies clarifying the interactions between VOCs and polymer/MOFs. Additionally, the practicality and applicability of the material were assessed by modifying industrial N95 dust masks.
Here, we report the fabrication of nanofibrous air-filtration membranes of intrinsically microporous polyimide with metal-organic frameworks (MOFs). The membranes successfully captured VOCs from air. Two polyimides with surface areas up to 500 m2 g-1 were synthesized, and the impact of the porosity on the sorption kinetics and capacity of the nanofibers were investigated. Two Zr-based MOFs, namely pristine UiO-66 (1071 m2 g-1) and defective UiO-66 (1582 m2 g-1), were embedded into the nanofibers to produce nanocomposite materials. The nanofibers could remove polar formaldehyde and non-polar toluene, xylene, and mesitylene from air. The highest sorption capacity with 214 mg g-1 was observed for xylene, followed by mesitylene (201 mg g-1), toluene (142 mg g-1), and formaldehyde (124 mg g-1). The incorporation of MOFs drastically improved the sorption performance of the fibers produced from low-surface-area polyimide. Time-dependent sorption tests revealed the rapid sequestration of air pollutants owing to the intrinsic porosity of the polyimides and the MOF fillers. The porosity allowed the rapid diffusion of pollutants into the inner fiber matrix. The molecular level interactions between VOCs and polymer/MOFs were clarified by molecular modeling studies. The practicality of material fabrication and the applicability of the material were assessed through the modification of industrial N95 dust masks. To the best of our knowledge, this is the first successful demonstration of the synergistic combination of intrinsically microporous polyimides and MOFs in the form of electrospun nanofibrous membranes and their application for VOC removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据