4.7 Article

Carbamazepine removal by the synergistic effect of manganese-oxidizing microalgae and biogenic manganese oxides

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 419, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126530

关键词

Biogenic manganese oxides; Manganese-oxidizing microalgae; Carbamazepine; Degradation pathway; Synergistic mechanisms

资金

  1. National Natural Science Foundation of China [51878093]
  2. Major Project of Natural Science Foundation of Chongqing [cstc2018jscx-mszdX0087]

向作者/读者索取更多资源

The study identified 40 strains of Mn-oxidizing microalgae with different mechanisms for Mn2+ oxidation. The combination of MnOMs and Bio-MnOx significantly increased the efficiency of carbamazepine removal, mainly through two synergistic mechanisms. The findings suggest that MnOMs and their generated Bio-MnOx have great potential for removing pharmaceutical contaminants from wastewater.
Forty strains of Mn-oxidizing microalgae (MnOMs) with different Mn2+ oxidation mechanisms were identified from two aquatic environments. Among them, three strains of isolates (Chlamydomonas sp. WH1-1, Chlamydo-monas sp. WH1-4, and Chlorella sp. WH2-5) oxidize Mn2+ by increasing the ambient pH and by secreting Mn oxidation factors (e.g., superoxide-production enzymes and/or other Mn oxidases) into the extracellular envi-ronment at the same time. In carbamazepine (CBZ) removal by MnOMs and/or Bio-MnOx, the combination of MnOMs and Bio-MnOx significantly increased the CBZ (1 mg/L) removal efficiency from 36.05% (by MnOMs alone) and 20.11% (by Bio-MnOx alone) to 80.13% by two synergistic mechanisms. One of the synergistic mechanisms was confirmed as that the Mn2+ was re-oxidized by MnOMs to Bio-MnOx, which can promote the CBZ removal, and another was the mutual exchange of degradation products of CBZ as shared reactants between MnOMs and Bio-MnOx. The degradation intermediates of CBZ were analyzed using high-performance liquid chromatography-tandem mass spectrometry, based on which the CBZ degradation pathway by MnOMs and Bio-MnOx was proposed. These findings expand existing knowledge on the Mn2+ oxidation mechanisms of MnOMs, and indicate that MnOMs and their generated Bio-MnOx are promising for the removal of CBZ or other phar-maceutical contaminants from wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据