4.7 Article

Seasonal disparities and source tracking of airborne antibiotic resistance genes in Handan, China

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 422, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126844

关键词

Antibiotic resistance genes (ARGs); Source tracking; Air masses; Airflow trajectories; Fine particulate matter (PM2; 5)

资金

  1. National Natural Science Foundation of China [42077393, 41703088]
  2. Key Projects of the National Nat-ural Science Foundation of China [41831287]
  3. Key Projects of Research and Development of Hebei Province [19273707D]

向作者/读者索取更多资源

This study reveals that the absolute abundance of ARG subtypes in winter is generally twice as high as in summer, possibly due to winter haze events with high particulate matter concentrations in Handan. Exogenous input from serious haze events and local release of ARGs loaded on PM2.5 of air masses may cause higher levels of ARGs in the winter.
The transmission of airborne antibiotic resistance genes (ARGs) loaded on particle is a significant global public health concern. Up to date, the dispersal pattern of airborne ARGs remains unclear despite their critical role in multiregional transmission. In this study, airborne ARGs loaded on fine particulate matter (PM2.5) and source tracking based on the airflow trajectories were performed by the potential source contribution function (PSCF) and concentration weighted trajectory (CWT) model. The results show that the absolute abundance of ARG subtypes were generally twice times higher in the winter season than that in the summer season, which could be attributable to winter haze events with high particulate matter concentrations in Handan. Exogenous input from serious haze events and local release of ARGs loaded on PM2.5 of air masses may cause higher levels of ARGs in the winter. Moreover, based on the positive correlation between the abundance of ARGs and PM2.5 concentration, a source tracing model of airborne ARGs was proposed to the estimate of ARGs release and dissemination. This study highlights airborne ARGs transmission loaded on PM2.5 of air masses, which facilitating the global spread of antibiotic resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据