4.7 Article

Adsorption of micropollutants from wastewater using iron and nitrogen co-doped biochar: Performance, kinetics and mechanism studies

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 424, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.127606

关键词

adsorption; organic micropollutants; carbon-based materials; Fe/N co-doped biochar

资金

  1. National Natural Science Foundation of China [52070151]
  2. New Style Think Tank of Shaanxi Universities
  3. College Student Innovation and Entrepreneurship Training Program [S202010703084]

向作者/读者索取更多资源

A novel iron and nitrogen co-doped biochar was successfully prepared and demonstrated highly efficient adsorption capacity for various micropollutants. The adsorption process was found to be feasible, spontaneous, and chemical in nature. The dominant driving force behind the efficient adsorption was the strengthening of pi-pi electron donor-acceptor interactions between the organics and the adsorbent.
In this study, a novel iron and nitrogen co-doped biochar (Fe/N-biochar) was successfully prepared and employed as an efficient adsorbent for micropollutants. The maximum adsorption capacity of Fe/N-biochar for bisphenol A (BPA) was 54 mg/g, which is significantly better than that of commercial graphene (19 mg/g) and activated carbon (6 mg/g). Additionally, for eight other common micropollutants (e.g., phenol, acetaminophen, and sulfamethoxazole), Fe/N-biochar also exhibited highly enhanced adsorption performance. The results of adsorption kinetics and isotherms studies showed that the adsorption of micropollutants onto Fe/N-biochar is by monolayer coverage. Thermodynamic studies further suggested that the adsorption process is feasible, spontaneous, and chemical in nature. The adsorption mechanism was investigated by correlation analysis between the adsorption capacity and the physiochemical properties of Fe/N-biochar. The results demonstrated that the strengthening of pi-pi electron donor-acceptor interactions between the organics and the adsorbent caused by the co-doping of iron and nitrogen was the dominant driving force behind the efficient adsorption of micropollutants. Furthermore, graphitic N and Fe-N-x were identified as the major adsorption sites. Simple heat treatment could effectively restore the adsorption capacity of Fe/N-biochar that had reached adsorption equilibrium. In view of its simple preparation method, highly enhanced adsorption capacity, and excellent recyclability, the prepared Fe/N-biochar can be regarded as a promising candidate for wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据