4.7 Article

Numerical evidence of anomalous energy dissipation in incompressible Euler flows: towards grid-converged results for the inviscid Taylor-Green problem

期刊

JOURNAL OF FLUID MECHANICS
卷 932, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2021.1003

关键词

computational methods; Navier-Stokes equations; turbulence theory

资金

  1. German Research Foundation (DFG) [KR4661/2-1, WA1521/18-1]
  2. Gauss Centre for Supercomputing e.V. [pr83te]

向作者/读者索取更多资源

This study contributes to the investigation of the well-known energy dissipation anomaly in inviscid limit by conducting high-resolution numerical simulations of the three-dimensional Taylor-Green vortex problem. The interesting observation is made that the kinetic energy evolution does not tend towards exact energy conservation as the spatial resolution of numerical scheme increases. This raises the question of whether the results obtained can be seen as a numerical confirmation of the famous energy dissipation anomaly and elaborates on an indirect approach for the identification of finite-time singularities based on energy arguments.
The well-known energy dissipation anomaly in the inviscid limit, related to velocity singularities according to Onsager, still needs to be demonstrated by numerical experiments. The present work contributes to this topic through high-resolution numerical simulations of the inviscid three-dimensional Taylor-Green vortex problem using a novel high-order discontinuous Galerkin discretisation approach for the incompressible Euler equations. The main methodological ingredient is the use of a discretisation scheme with inbuilt dissipation mechanisms, as opposed to discretely energy-conserving schemes, which - by construction - rule out the occurrence of anomalous dissipation. We investigate effective spatial resolution up to 8192(3) (defined based on the 2 pi-periodic box) and make the interesting phenomenological observation that the kinetic energy evolution does not tend towards exact energy conservation for increasing spatial resolution of the numerical scheme, but that the sequence of discrete solutions seemingly converges to a solution with non-zero kinetic energy dissipation rate. Taking the fine-resolution simulation as a reference, we measure grid-convergence with a relative L-2-error of 0.27% for the temporal evolution of the kinetic energy and 3.52% for the kinetic energy dissipation rate against the dissipative fine-resolution simulation. The present work raises the question of whether such results can be seen as a numerical confirmation of the famous energy dissipation anomaly. Due to the relation between anomalous energy dissipation and the occurrence of singularities for the incompressible Euler equations according to Onsager's conjecture, we elaborate on an indirect approach for the identification of finite-time singularities that relies on energy arguments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据