4.7 Article

A vortex sheet based analytical model of the curled wake behind yawed wind turbines

期刊

JOURNAL OF FLUID MECHANICS
卷 933, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2021.1010

关键词

wakes

资金

  1. Innovate UK [89640]
  2. National Science Foundation [1949778]
  3. Innovate UK [89640] Funding Source: UKRI
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [1949778] Funding Source: National Science Foundation

向作者/读者索取更多资源

Motivated by the need to mitigate power reduction and unsteady loading of downstream turbines, this study develops an analytical model to predict the shape of curled wakes. By estimating the vorticity distribution at the wake edge and considering the wake as a vortex sheet, the model describes the time evolution of the wake shape. The model is validated against simulations and experiments, and shows a universal solution for curled wakes with suitable dimensionless variables.
Motivated by the need for compact descriptions of the evolution of non-classical wakes behind yawed wind turbines, we develop an analytical model to predict the shape of curled wakes. Interest in such modelling arises due to the potential of wake steering as a strategy for mitigating power reduction and unsteady loading of downstream turbines in wind farms. We first estimate the distribution of the shed vorticity at the wake edge due to both yaw offset and rotating blades. By considering the wake edge as an ideally thin vortex sheet, we describe its evolution in time moving with the flow. Vortex sheet equations are solved using a power series expansion method, and an approximate solution for the wake shape is obtained. The vortex sheet time evolution is then mapped into a spatial evolution by using a convection velocity. Apart from the wake shape, the lateral deflection of the wake including ground effects is modelled. Our results show that there exists a universal solution for the shape of curled wakes if suitable dimensionless variables are employed. For the case of turbulent boundary layer inflow, the decay of vortex sheet circulation due to turbulent diffusion is included. Finally, we modify the Gaussian wake model by incorporating the predicted shape and deflection of the curled wake, so that we can calculate the wake profiles behind yawed turbines. Model predictions are validated against large-eddy simulations and laboratory experiments for turbines with various operating conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据