4.7 Article

Resilient planning optimization through spatially explicit, Bi-directional sociohydrological modeling

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 300, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113742

关键词

Sociohydrology; Surface runoff; Land-use change; Coupled modeling; Spatial explicitness; Resilience

资金

  1. Illinois Water Resources Center
  2. United States Geological Survey

向作者/读者索取更多资源

This study discusses stormwater runoff as a critical urban issue and presents an integrated sociohydrological modeling system that projects and assesses bi-directional impacts. Through a case study in McHenry County, Illinois, the research reveals varied responses to hydrological variables among different land uses, indicating conflicting developmental preferences.
Stormwater runoff is one critical urban issue that exemplifies the complexity in coupling human and natural systems. Innumerable studies have described and assessed the hydrological responses that result from land-use changes through a 'post land use change' hydrological analysis. Complex systems theory, however, suggests that the urban and ecological systems operate as an intertwined whole. This means that typical one-directional analysis can miss critical components of a bi-directional sociohydrological process. In addition, there is a difference in physical scales between hydrological analysis and policymaking that is often left unresolved. Typical hydrological models are limited to a watershed and are not easily applied to policymaking that is generally demarcated by a political boundary. These types of models also lack the spatial explicitness needed for physical design responses. To address these issues, we develop an integrated, finely scaled, spatially explicit sociohydrological modeling system. The coupled land use/stormwater model projects and assesses bi-directional sociohydrological impacts to changing land uses. We apply and test the system in McHenry County, Illinois, by modeling three scenarios to the year 2045. The results show that residential and commercial developments exhibit different responses to hydrological variables, resulting in varying patterns of land use locational choices. We also find that there is a conflict between developmental preferences that prefer to be located near water (housing) and those that prefer to be located away from runoff-prone water areas (commercial land uses). Our bidirectional modeling system simulates cell-to-cell interactions to produce quantifiable and practically useful outputs. The output for McHenry County, Illinois, includes specific, locational information on how to optimize developmental regulations in response to the contradictory developmental preferences and, more importantly, how to live with runoff in the context of resilience. This research supports the need for cell-based forwardlooking modeling to better understand complex urban systems and strategically establish a resilient built environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据