4.7 Article

Nutrient and fine sediment loading from fish pond drainage to pearl mussel streams - Management implications for highly valuable stream ecosystems

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 302, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113987

关键词

Aquaculture effects; Nitrogen pollution; Stream conservation; Effluent management; Retention structure

向作者/读者索取更多资源

Man-made drainage from aquaculture ponds can lead to accumulation of nitrogen and phosphorus in receiving waters, but using settling ponds can effectively reduce the release of suspended particles and excess nutrients into downstream ecosystems.
Man-made, drainable aquaculture ponds have the potential to affect the water quality in the receiving waters, but whether they act mainly as a source or sink of fine sediments and nutrients is still unclear. Particularly in oligotrophic streams containing populations of the highly endangered freshwater pearl mussel (Margaritifera margaritifera), even low additional inputs pose the threat of exceeding thresholds for downstream habitat quality. In this study, the effluent quality during the drainage of two extensively used cyprinid ponds with a size of 0.103 and 0.150 ha was monitored at a high temporal resolution, to characterize the nutrient and sediment loading into the receiving stream under two different management scenarios. The loading of total suspended solids (TSS) was disproportionally dominated by the final step of pond drainage during the fish harvest, when a proportion of 30% of the particles released over the entire drainage process was released with only 1% of the total water volume drained. The continuous release of the ponds' surface water resulted in an additional loading of 28.8 kg/ha of NO3-N, 0.82 kg/ha of NH4-N and 0.58 kg/ha of total-P that was not strongly enhanced by the fish harvest. Using a settling pond was an efficient measure to reduce the amount of suspended particles and excess ammonium and phosphorous reaching the receiving stream. Without such a measure, TSS concentrations in the receiving stream during the fish harvest were elevated to a maximum of >900 mg/l, representing a 20-fold increase compared to 45 mg/l upstream. However, about 1/3 of the released TSS were retained in the overgrown outflow ditch. The differences in loading and retention patterns of dissolved and particulate pollutants revealed the need for divergent approaches to address suspended or dissolved pollutants: Physical settling structures can be effective at reducing particulate inputs, but they might not be sufficient to mitigate the negative effects on oligotrophic streams without a specific design to sustainably remove nutrients. This information on drainage management is not only relevant for minimizing the impacts of aquaculture ponds on downstream ecosystems, but also for the maintenance of nature conservation and flood retention ponds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据