4.7 Article

Economic and environmental nitrate leaching consequences of 4R nitrogen management practices including use of inhibitors for corn production in Ontario

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 300, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113739

关键词

4R N Management; 4R Economics; Nitrate leaching; Nitrification inhibitors; Urease inhibitors; Economic and environmental tradeoffs

资金

  1. Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) /University of Guelph partnership
  2. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Reducing nitrogen application and adjusting fertilization methods can significantly decrease nitrate leaching from corn production, improving nitrogen use efficiency, but trade-offs between yield and environmental losses need to be considered.
Nitrate (NO3-) leaching has negative human and environmental health consequences that can be attributed to and mitigated by agricultural decision making. The purpose of this study is to examine the economic and environmental nitrogen (N) leaching reduction from 4R (Right Rate, Right Source, Right Time, Right Placement) agricultural management practices, including application methods, timing and rates, and the use of nitrification and urease inhibitors, for Ontario corn production. This study employed an integrated biophysical and economic GIS-based simulation model considering corn yields, prices, and production costs, and environmental losses, under historical weather scenarios, with NO3- leaching constraints. Reducing N application from historical to model optimized agronomic rates sharply lowered corn NO3- leaching from 75.3 to 24.9 kt N per year. Increasing model restrictions on corn NO3- leaching increased the use of broadcast and sidedress application methods compared to injection and lower overall production. They also increased the use of nitrification and urease inhibitors, which increased N use efficiency, because they allowed lower leaching from corn production, for a price. Leaching decreases from restrictions trade-off with ammonia (NH3) volatilization increases, but there was no trade-off with nitrous oxide (N2O) emissions. This highlighted the importance of considering net N losses and production trade-offs by policy decision-makers when developing N loss reduction strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据