4.7 Article

Sewage sludge ash-incorporated stabilisation/solidification for recycling and remediation of marine sediments

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 301, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113877

关键词

Stabilisation; solidification; Sediments; Sewage sludge ash; Pore structure; Heavy metals leaching; Waste recycling

向作者/读者索取更多资源

The study highlights the beneficial use of ISSA and traditional binders to stabilize/solidify marine sediments, achieving high strength and low environmental impact. Combining ISSA with lime can be a promising alternative to cement in producing fill materials for dredged marine sediments.
Finding suitable disposal sites for dredged marine sediments and incinerated sewage sludge ash (ISSA) is a challenge. Stabilisation/solidification (S/S) has become an increasingly popular remediation technology. This study sheds light on the possible beneficial use of ISSA together with traditional binders to stabilise/solidify marine sediments. The performance of the binders on S/S of sediment 1 (clean) and sediment 2 (contaminated) was also compared. The results showed that the use of ISSA as part of the binder was effective in promoting the strength of the sediment with a high initial moisture content due to ISSA porous and high water absorption characteristics. The sediments treated with 10% cement and 20% ISSA attained the highest strength. Also, cement hydration as well as pozzolanic reactions between ISSA and Ca(OH)2 made contributions to the strength development. This was supported by the microstructural analysis, in particular the porosity results. In terms of environmental impacts, two leaching tests (toxicity characteristic leaching procedure and synthetic precipitation leaching procedure) found that all the S/S treated sediment by 10% lime and 20% ISSA resulted in the lowest leachate concentrations under the on-site reuse scenario or under simulative acidic rainfall conditions. Therefore, recycling waste ISSA with lime can be used as an appealing binder to replace cement to stabilise/solidify dredged marine sediments for producing fill materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据