4.7 Article

Improved accuracy of wildfire simulations using fuel hazard estimates based on environmental data

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 301, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113789

关键词

Fire prediction; Fire behaviour; Forest fuel; Vegetation; Wildfire; Fire risk

资金

  1. Victorian Department of Environment, Land, Water and Planning, Victorian Government through the Integrated Forest Ecosystem Research program
  2. Australian Government Research Training Program (RTP) Scholarship
  3. Risk 2.0 project
  4. Victorian Dept of Environment, Land, Water and Planning
  5. Univ. of Melbourne

向作者/读者索取更多资源

The extent and impacts of wildfires are increasing worldwide. Fire management agencies use simulation models to understand fire behavior and reduce risks, with a major challenge being the accurate prediction of fuel variables across landscapes to improve the accuracy of fire behavior predictions.
Wildfire extent and their impacts are increasing around the world. Fire management agencies use fire behaviour simulation models operationally (during a wildfire event) or strategically for risk assessment and treatment. These models provide agencies with increased knowledge of fire potential to improve identification of the best strategies for reducing risk. One of the greatest areas of uncertainty in fire simulations is the data relating to fuel, which are usually based on simplified response trajectories with time since fire within vegetation communities. There is a clear need to better predict relevant fuel variables across landscapes to reduce uncertainties in fire simulations. In this study, we compare the performance of fuel hazard models based on environmental variables (environmental model) with those currently implemented based on a negative exponential relationship with time since fire (NEGEXP) using the state of Victoria in south-eastern Australia as an environmentally diverse case study. The models predicted similar broadscale patterns in fuel hazard but with considerable regional variation. The NEGEXP model was less accurate than the environmental model, which had 41-47% accuracy on an independent data set cf. 24-35% for NEGEXP. Model differences resulted in significant differences in the extent and spatial location of predicted fires with NEGEXP consistently predicting larger fires. Fuel is made up of the live and dead components of vegetation, both of which are influenced by a range of environmental factors. As our study highlights, ignoring environmental factors in simple fuel models based on broad vegetation types (like NEGEXP) will likely compromise the predictive accuracy of fire behaviour models. Only when environmental factors are accounted for can we more accurately predict fuels across landscapes and thereby improve the accuracy of fire behaviour predictions and the estimation of fire risks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据