4.7 Article

Structural, optical and photocatalytic properties of magnetic recoverable Mn0.6Zn0.4Fe2O4@Zn0.9Mn0.1O heterojunction prepared from waste Mn-Zn batteries

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 302, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.114120

关键词

Mn-Zn ferrite; Mn doped ZnO; Magnetic photocatalyst; MB degradation; Photocatalytic activity

资金

  1. National Natural Science Foundation of China [21866031]
  2. national undergraduate training program for innovation and entrepreneurship [202110719008, S202010719076]

向作者/读者索取更多资源

In this study, magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn0.9Mn0.1O (MZFO@ZMO) heterojunctions were successfully prepared from waste Mn-Zn batteries, exhibiting excellent photocatalytic activity under visible light irradiation. The optimized MZFO@50%-ZMO showed the highest photodegradation efficiency towards methylene blue, with a promising potential for practical application.
Green, simple and high value-adding technology is crucial for realizing waste batteries recycling. In this work, the magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn0.9Mn0.1O (MZFO@ZMO) heterojunctions are prepared from waste Mn-Zn batteries via a green bioleaching and sample co-precipitation method. The as-prepared catalysts with different Zn0.9Mn0.1O weight percentage (25%, 50% and 75%) have been comprehensively characterized in structure, optics, photoelectrochemistry and photocatalytic activity. Characterization results indicate that MZFO@ZMO heterojunctions with the core-shell structure, demonstrates excellent absorption intensity in the visible light region, outperforming that of individual ZnO and Zn0.9Mn0.1O. Especially, the staggered bandgap alignment of Mn0.6Zn0.4Fe2O4 and Zn0.9Mn(0.1)O greatly enhances electron transfer and charge separation in the binary heterojunction system. The optimized MZFO@50%-ZMO shows the highest photodegradation performance toward methylene blue (MB) under the visible light irradiation, with a 99.7% of photodegradation efficiency of 20 mg L-1 of MB within 90 min, and its reactive kinetic constants is about 7.2, 10.8 and 21.7 times higher than that of Zn0.9Mn0.1O, P25 TiO2 and Mn0.6Zn0.4Fe2O4, respectively. The MB photocatalytic mechanism is investigated in the scavenger and 5,5-dimethylpyrroline-N-oxide (DMPO) spin-trapping electron spin resonance (ESR) experiments, and h(+) and *O-2(-) are identified as the major active species for MB degradation. In addition, MZFO@50%-ZMO also exhibits a good reusability and high magnetic separation properties after six successive cycles. This new material indicates the advantages of low costs, simple reuse and great potential in application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据