4.7 Article

Effectual removal of indoor ultrafine PM using submicron water droplets

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 296, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113166

关键词

Indoor air quality; Ultrafine particulate matter; PM removal efficiency; Ultrasonic atomization; Nanoporous membrane; Submicron water droplets

资金

  1. National Research Foundation of Korea - Korea government (MSIP) [2017R1A2B3005415]

向作者/读者索取更多资源

The study showed that submicron water droplets are effective in removing indoor ultrafine particulate matter, with a removal efficiency approximately twice as high as micron-sized water droplets. The results also indicated that as the size of water droplets decreases, the efficiency of particulate matter collection increases significantly.
Exposure to ultrafine airborne particulate matter (PM1.0) poses a significant risk to human health and well-being. Examining the effect of submicron water droplets on the removal of ultrafine PM is timely and important for mitigating indoor ultrafine PM, which is difficult to filter out from incoming air. In this study, submicron water droplets were made by using a nanoporous membrane and an ultrasonic module of a commercial household ultrasonic humidifier (UH) for effectual ultrafine PM removal. The effect of water droplet size on indoor PM removal was experimentally investigated. Variations in the normalized PM concentration, removal efficiency and deposition constants were evaluated by analyzing the temporal variation in PM concentration inside a test chamber. The measured PM deposition constants were compared with the results of other previous studies. As a result, submicron water droplets of 800 nm in mean diameter were generated by ultrasonic module combined passive nanoporous membrane, and PM1.0 concentration decreased by 30% in the initial 30 min. Compared with micron-sized water droplets, PM1.0 removal efficiency improved by approximately two times higher. Moreover, the substitution of the experimental results into a theoretical model ascertained that PM collection efficiency is increased by approximately 103 levels as the size of water droplets decreases. These results would be utilized in the development and implementation of effective strategies for indoor PM removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据