4.5 Article

Morphological principles of neuronal mitochondria

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 530, 期 6, 页码 886-902

出版社

WILEY
DOI: 10.1002/cne.25254

关键词

EM tomography; energetics; mitochondria; morphology; neuronal

资金

  1. Air Force Office of Scientific Research
  2. AFOSR
  3. Multidisciplinary University Research Initiative [FA9550-181-0051]
  4. NIHBlueprint for Neuroscience Research [GM103712, NSFDBI-1707356, NSFDBI-2014862]
  5. Office of Naval Research [N00014-20-1-2469]
  6. Luxembourg National Research Fund
  7. Hartwell Foundation

向作者/读者索取更多资源

This study analyzed mitochondrial morphology in mouse cerebellum neuropil neurons using 3D tracing and differential geometry methods, revealing the impact of mitochondrial structure on cellular metabolic output. These findings contribute to future modeling studies of mitochondrial physiology and metabolism in neurons.
In the highly dynamic metabolic landscape of a neuron, mitochondrial membrane architectures can provide critical insight into the unique energy balance of the cell. Current theoretical calculations of functional outputs like adenosine triphosphate and heat often represent mitochondria as idealized geometries, and therefore, can miscalculate the metabolic fluxes. To analyze mitochondrial morphology in neurons of mouse cerebellum neuropil, 3D tracings of complete synaptic and axonal mitochondria were constructed using a database of serial transmission electron microscopy (TEM) tomography images and converted to watertight meshes with minimal distortion of the original microscopy volumes with a granularity of 1.64 nanometer isotropic voxels. The resulting in-silico representations were subsequently quantified by differential geometry methods in terms of the mean and Gaussian curvatures, surface areas, volumes, and membrane motifs, all of which can alter the metabolic output of the organelle. Finally, we identify structural motifs present across this population of mitochondria, which may contribute to future modeling studies of mitochondrial physiology and metabolism in neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据