4.7 Article

Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 607, 期 -, 页码 34-44

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2021.08.153

关键词

Electrospinning; Iron oxide nanocubes; Doxorubicin; Stimuli-responsive nanofibers; Magnetic hyperthermia; Heat-mediated drug release

资金

  1. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program ERC Starting Grant INTER-CELLMED [759959]
  2. My First AIRC [22902]
  3. Tecnopolo per la medicina di precisione (TecnoMed Puglia) Regione Puglia: DGR [2117, CUP: B84I18000540002]
  4. European Research Council [678109]
  5. AIRC association (AIRC-IG) [14527]

向作者/读者索取更多资源

This study combined magnetic nanoparticles loaded into polycaprolactone nanofibers with chemotherapy and magnetic hyperthermia to achieve significant cytotoxic effects on cancer cells.
Among the strategies to fight cancer, multi-therapeutic approaches are considered as a wise choice to put in place multiple weapons to suppress tumors. In this work, to combine chemotherapeutic effects to magnetic hyperthermia when using biocompatible scaffolds, we have established an electrospinning method to produce nanofibers of polycaprolactone loaded with magnetic nanoparticles as heat mediators to be selectively activated under alternating magnetic field and doxorubicin as a chemotherapeutic drug. Production of the fibers was investigated with iron oxide nanoparticles of peculiar cubic shape (at 15 and 23 nm in cube edges) as they provide benchmark heat performance under clinical magnetic hyperthermia conditions. With 23 nm nanocubes when included into the fibers, an arrangement in chains was obtained. This linear configuration of magnetic nanoparticles resemble that of the magnetosomes, produced by magnetotactic bacteria, and our magnetic fibers exhibited remarkable heating effects as the magnetosomes. Magnetic fiber scaffolds showed excellent biocompatibility on fibroblast cells when missing the chemotherapeutic agent and when not exposed to magnetic hyperthermia as shown by viability assays. On the contrary, the fibers containing both magnetic nanocubes and doxorubicin showed significant cytotoxic effects on cervical cancer cells following the exposure to magnetic hyperthermia. Notably, these tests were conducted at magnetic hyperthermia field conditions of clinical use. As here shown, on the doxorubicin sensitive cervical cancer cells, the combination of heat damage by magnetic hyperthermia with enhanced diffusion of doxorubicin at therapeutic temperature are responsible for a more effective oncotherapy. (c) 2021 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据