4.7 Article

Biochar/Mg-Al spinel carboxymethyl cellulose-La hydrogels with cationic polymeric layers for selective phosphate capture

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 606, 期 -, 页码 736-747

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2021.08.078

关键词

Biochar; Cellulose; Phosphate capture; Selectivity; Reusability

资金

  1. National Natural Science Foundation of China [21676039]
  2. Liaoning Revitalization Talents Program [XLYC2002114]
  3. Innovative talents in Liaoning universities [LR2017045]
  4. Dalian Leading Talents Project [2018-192]

向作者/读者索取更多资源

The newly fabricated composite adsorbent integrating multiple components exhibited enhanced phosphate capturing performance, good reusability, and selectivity, with the adsorption mechanism involving electrostatic attraction, ligand exchange, and inner-sphere complexation.
Recently, biochar-related phosphate sorbents have been extensively investigated and achieved significant progress; however, there is still much room for enhancement on capturing performance and recovery of powdery ones after sorption. Herein, a new kind of adsorbent, in which biochar/Mg-Al spinel encapsulated in carboxymethyl cellulose-La hydrogels with cationic polymeric layers, was fabricated, aiming for integrating multi-advantages of each component for enhanced phosphate capture. Batch static experiments were correlated to the phosphate adsorption performance of the adsorbent. The maximum phosphate adsorption capacity of the adsorbent was 89.65 mg P/g at pH = 3. The Langmuir isotherm model and the pseudo-second-order kinetic model fitted well with the adsorption behavior of the adsorbent. More importantly, this composite adsorbent that integrated with biochar, Mg-Al spinel, cationic polymeric components exhibited favorable selectivity over coexisting anions (Cl-, SO42-, HCO3- and NO3-) and performed good reusability after five consecutive cycles. By virtue of the bead-like feature, fixed bed column experiments demonstrated that the Thomas model fitted the breakthrough curves well under varied experimental conditions. The adsorption mechanism of phosphate on the designed composite adsorbent with multi-components could be described as the electrostatic attraction, ligand exchange and inner-sphere complexation, which might account for the efficient phosphate capturing performance. (C) 2021 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据