4.7 Article

Life cycle assessment of sewage sludge pretreatment for biogas production: From laboratory tests to full-scale applicability

期刊

JOURNAL OF CLEANER PRODUCTION
卷 322, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2021.129056

关键词

Life cycle assessment; Enhanced anaerobic digestion; Sewage sludge; Pretreatment; Economic analysis

向作者/读者索取更多资源

Different pretreatment technologies, such as low-temperature thermal treatment and ultrasonication, were investigated to increase biogas yield from sewage sludge. The study found that low-temperature thermal pretreatment showed the best performance in enhancing sludge solubilization and methane yield. LCA indicated that ultrasonication had the worst environmental impacts at laboratory scale, but could reduce greenhouse gas emissions, fossil depletion, and stratospheric ozone depletion at full-scale conditions.
In this work, different pretreatment technologies (low temperature thermal treatment, ultrasonication, alkali treatment, combined alkali-thermal treatment, icing-thawing) were investigated together with biochar addition to increase biogas yield from sewage sludge. The aim of the work was to develop a standardized protocol, including physicochemical characterization, biochemical methane potential (BMP) tests, digestate characterization, life cycle assessment (LCA) and economic analysis, to verify the techno-economic suitability and the related environmental impacts of upgrading conventional full-scale anaerobic digesters. Low-temperature (65-85 degrees C) thermal pretreatment showed the best performances in enhancing sludge solubilization and methane yield (up to 110%), followed by ultrasonication (up to 53%) and biochar addition (about 16%). The solubilization rate obtained after each pretreatment was similar for municipal and industrial sludge; however, it did not correspond to a proportional increase in methane yield. LCA showed that ultrasonication led to the worst environmental impacts at laboratory scale, due to the huge electricity request; however, at full-scale conditions, green-house gases (GHG) emissions could be reduced by 22%, fossil depletion by 25% and stratospheric ozone depletion by 18%, when compared to the baseline scenario (raw sludge anaerobic digestion). The economic analysis proved that the high ultrasonication capital costs could not be recovered in the considered timeframe (15 yr), while biochar price should be significantly lowered (down to 6.5 (sic)/ton) to give an overall positive outcome. Finally, the thermal scenario would be convenient only when considering waste heat recovery. The proposed protocol, including physicochemical sludge characterization, BMP tests, digestate characterization, LCA and economic analysis, could be extended to other existing digesters to compare alternative pretreatment strategies, enhancing renewable energy generation in biogas form.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据