4.7 Article

Dressing of Vertices by Cumulants in Multi-Reference Coupled Cluster

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 17, 期 11, 页码 6947-6964

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.1c00730

关键词

-

资金

  1. New National Excellence Program of the Ministry for Innovation and Technology from National Research, Development and Innovation Fund [UNKP-20-3]
  2. Hungarian Ministry of Human Capacities [TKP20 20-IKA-05]

向作者/读者索取更多资源

The new scheme based on MRGWT introduces a hierarchical structure in the equations, facilitating approximation design and revealing a substitution method for one- and two-particle interaction vertices.
A new scheme is introduced in Multi-Reference (MR) Coupled Cluster (CC) based on the MR Generalized Normal Ordering (MRGNO) and the corresponding MR Generalized Wick Theorem (MRGWT) of Kutzelnigg and Mukherjee. The key element is the identification of a structure in MRGWT generated terms, facilitated by Goldstone diagram techniques. This allows for bundling the many terms of the MRGWT expansion and introduces a hierarchy in the equations that can be harnessed in devising approximations. One- and two-particle interaction vertices are found to be uniformly substituted for their counterpart dressed by density cumulants. This allows for a straightforward rewriting of the ordinary energy expression of CC with interaction dressed (id) one- and two-particle terms and reveals the presence of three-and higher-rank dressed interaction vertices too. Cumulants appearing out of dressed interaction vertices contribute to the amplitude equations and can be interpreted to have an amplitude dressing role. Dressing of one- and two-particle interaction vertices is the most straightforward to implement and does not hinder computational feasibility, provided that the reference function involves strictly limited active space sizes. The Generalized Valence Bond wave function, underlying pilot numerical tests, fulfills this criterion. Results on multiple bond breaking scenarios point to the need of stepping beyond one- and two-particle id. An extremely simple version of incorporating amplitude dressing in addition to one- and two-particle id is seen to cure the potential energy curves remarkably, stimulating further investigations along this line.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据