4.7 Article

Efficient Exploration of Chemical Space with Docking and Deep Learning

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 17, 期 11, 页码 7106-7119

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.1c00810

关键词

-

向作者/读者索取更多资源

The increasing availability of purchasable compounds for virtual screening and assay has led to the development of a machine learning-enhanced molecular docking protocol, which drastically improves throughput and preserves the diversity of experimentally confirmed hit compounds. This protocol successfully identifies high scoring compounds while exploring a large region of chemical space, demonstrating superior performance compared to traditional methods.
With the advent of make-on-demand commercial libraries, the number of purchasable compounds available for virtual screening and assay has grown explosively in recent years, with several libraries eclipsing one billion compounds. Today's screening libraries are larger and more diverse, enabling the discovery of more-potent hit compounds and unlocking new areas of chemical space, represented by new core scaffolds. Applying physics-based in silico screening methods in an exhaustive manner, where every molecule in the library must be enumerated and evaluated independently, is increasingly cost-prohibitive. Here, we introduce a protocol for machine learning-enhanced molecular docking based on active learning to dramatically increase throughput over traditional docking. We leverage a novel selection protocol that strikes a balance between two objectives: (1) identifying the best scoring compounds and (2) exploring a large region of chemical space, demonstrating superior performance compared to a purely greedy approach. Together with automated redocking of the top compounds, this method captures almost all the high scoring scaffolds in the library found by exhaustive docking. This protocol is applied to our recent virtual screening campaigns against the D4 and AMPC targets that produced dozens of highly potent, novel inhibitors, and a blind test against the MT1 target. Our protocol recovers more than 80% of the experimentally confirmed hits with a 14-fold reduction in compute cost, and more than 90% of the hit scaffolds in the top 5% of model predictions, preserving the diversity of the experimentally confirmed hit compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据