4.7 Article

The superatomic state beyond conventional magic numbers: Ligated metal chalcogenide superatoms

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 155, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0062582

关键词

-

资金

  1. U.S. Department of Energy (DOE) [DE-SC0006420]

向作者/读者索取更多资源

Cluster science is gaining attention due to the size and composition-dependent properties of clusters. The superatom concept provides a unifying framework for understanding cluster behaviors. Ligated metal-chalcogenide clusters exhibit periodic electronic structures and predictable redox properties.
The field of cluster science is drawing increasing attention due to the strong size and composition-dependent properties of clusters and the exciting prospect of clusters serving as the building blocks for materials with tailored properties. However, identifying a unifying central paradigm that provides a framework for classifying and understanding the diverse behaviors is an outstanding challenge. One such central paradigm is the superatom concept that was developed for metallic and ligand-protected metallic clusters. The periodic electronic and geometric closed shells in clusters result in their properties being based on the stability they gain when they achieve closed shells. This stabilization results in the clusters having a well-defined valence, allowing them to be classified as superatoms-thus extending the Periodic Table to a third dimension. This Perspective focuses on extending the superatomic concept to ligated metal-chalcogen clusters that have recently been synthesized in solutions and form assemblies with counterions that have wide-ranging applications. Here, we illustrate that the periodic patterns emerge in the electronic structure of ligated metal-chalcogenide clusters. The stabilization gained by the closing of their electronic shells allows for the prediction of their redox properties. Further investigations reveal how the selection of ligands may control the redox properties of the superatoms. These ligated clusters may serve as chemical dopants for two-dimensional semiconductors to control their transport characteristics. Superatomic molecules of multiple metal-chalcogen superatoms allow for the formation of nano-p-n junctions ideal for directed transport and photon harvesting. This Perspective outlines future developments, including the synthesis of magnetic superatoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据