4.5 Article

Interleukin-7 aggravates myocardial ischaemia/reperfusion injury by regulating macrophage infiltration and polarization

期刊

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
卷 25, 期 21, 页码 9939-9952

出版社

WILEY
DOI: 10.1111/jcmm.16335

关键词

interleukin-7; ischaemia; reperfusion injury; macrophage; myocardial

资金

  1. National Natural Science Foundation of China [81700262, 81970292, 81703890]

向作者/读者索取更多资源

IL-7 enhances myocardial I/R injury by promoting cardiomyocyte apoptosis through the regulation of macrophage infiltration and polarization.
Interleukin (IL)-7 is known to enhance the macrophages cytotoxic activity and that macrophages play a pivotal role in the development and progression of myocardial ischaemia/reperfusion (I/R) injury. However, the effects of IL-7 on macrophages infiltration and polarization in myocardial I/R injury are currently unclear. This study aimed to evaluate the effects of the IL-7 expression on myocardial I/R injury and their relationship with macrophages. The data showed that IL-7 expression in mouse heart tissue increases following I/R injury and that IL-7 knockout or anti-IL-7 antibody treatment significantly improve I/R injury, including reduction in myocardial infarction area, a serum troponin T level decreases and an improvement in cardiac function. On the other hand, recombinant IL-7 (rIL-7) supplementation induces opposite effects and the anti-IL-7 antibody significantly reduces the cardiomyocyte apoptosis and macrophage infiltration. rIL-7 cannot directly cause apoptosis, but it can induce cardiomyocyte apoptosis through macrophages, in addition to increase the macrophages migration in vitro. Anti-IL-7 antibody affects the cytokine production in T helper (Th) 1 and Th2 cells and also promotes the macrophages differentiation to M2 macrophages. However, anti-IL-7 antibody does not reduce the M1 macrophage number, and it only increases the ratio of M2/M1 macrophages in mice heart tissues after I/R injury. Taking together, these data reveal that IL-7 plays an intensifying role in myocardial I/R injury by promoting cardiomyocyte apoptosis through the regulation of macrophage infiltration and polarization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据