4.8 Article

Coordination engineering of the hybrid Co-C and Co-N active sites for efficient catalyzing CO2 electroreduction

期刊

JOURNAL OF CATALYSIS
卷 405, 期 -, 页码 634-640

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2021.10.011

关键词

CO2 reduction reaction; Electrochemical hydrogen pump reactor; Co-C coordination; Coordination environment; Density functional theory (DFT)

资金

  1. National Science Foundation of China [21776034, 22021005, U1663223]
  2. National Key Research and Development Program of China [2019YFE0119200]
  3. MOST innovation team in key areas [2016RA4053]
  4. Fundamental Research Funds for the Central Universities [DUT21TD406, DUT20LAB307]
  5. Liaoning Key Laboratory of Chemical Additive Synthesis and Separation [ZJKF2012]

向作者/读者索取更多资源

In this study, tunable Co single-atom catalysts were fabricated and the effect of metal-C coordination on catalyzing CO2 reduction reaction was investigated. The experimental results showed that the CO Faradaic efficiency of the catalysts could be significantly enhanced by adjusting the ratio of metal-N/C sites. Further theoretical calculations revealed that increasing the Co-C coordination ratio could enrich the electron density of Co atoms and promote the adsorption of *COOH.
Single-atom catalysts (SACs) with well-defined active sites provide an efficient route for catalyzing CO2 reduction reaction (CO2RR). Although enormous attention has been focused on metal-Nx moieties, understanding the effect of metal-C coordination and engineering of the hybrid metal-N/C sites have rarely been reported. Herein, we fabricated Co SACs with tunable isolated Co-N5-xCx (x = 1, 2, 3) sites supported on porous carbon frameworks. Benefiting from the difference in electronegativity of the coordinated N and C atoms, the CO Faradaic efficiency (FECO) enhanced considerably from 54% to 76% and 92% at-0.8 V vs. RHE for Co-N4C1, Co-N3C2, and Co-N2C3, respectively. Further density functional theory (DFT) calculations uncover that the increased ratio of Co-C coordination induced electron enrichment of Co atoms and upper-shift the d-band center to near Fermi level, and thus favorably promotes the electron-donating ability of Co centers and strengthens the adsorption of *COOH. (C) 2021 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据