4.6 Article

EGFR Signaling Is Required for Maintaining Adult Cartilage Homeostasis and Attenuating Osteoarthritis Progression

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 37, 期 5, 页码 1012-1023

出版社

WILEY
DOI: 10.1002/jbmr.4531

关键词

EGFR; ADULT CARTILAGE; OSTEOARTHRITIS; DMM; CARTILAGE DEGENERATION

资金

  1. NIH [R01AG067698, R01AR074490, P30AR069619]

向作者/读者索取更多资源

This study demonstrates the critical role of chondrogenic EGFR signaling in maintaining postnatal slow-cycling cells, adult cartilage homeostasis, and the progression of osteoarthritis (OA).
The uppermost superficial zone of articular cartilage is the first line of defense against the initiation of osteoarthritis (OA). We previously used Col2-Cre to demonstrate that epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, plays an essential role in maintaining superficial chondrocytes during articular cartilage development. Here, we showed that EGFR activity in the articular cartilage decreased as mice age. In mouse and human OA samples, EGFR activity was initially reduced at the superficial layer and then resurged in cell clusters within the middle and deep zone in late OA. To investigate the role of EGFR signaling in postnatal and adult cartilage, we constructed an inducible mouse model with cartilage-specific EGFR inactivation (Aggrecan-CreER Egfr(Wa5/flox), Egfr iCKO). EdU incorporation revealed that postnatal Egfr iCKO mice contained fewer slow-cycling cells than controls. EGFR deficiency induced at 3 months of age reduced cartilage thickness and diminished superficial chondrocytes, in parallel to alterations in lubricin production, cell proliferation, and survival. Furthermore, male Egfr iCKO mice developed much more severe OA phenotypes, including cartilage erosion, subchondral bone plate thickening, cartilage degeneration at the lateral site, and mechanical allodynia, after receiving destabilization of the medial meniscus (DMM) surgery. Similar OA phenotypes were also observed in female iCKO mice. Moreover, tamoxifen injections of iCKO mice at 1 month post-surgery accelerated OA development 2 months later. In summary, our data demonstrated that chondrogenic EGFR signaling maintains postnatal slow-cycling cells and plays a critical role in adult cartilage homeostasis and OA progression. (c) 2022 American Society for Bone and Mineral Research (ASBMR).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据