4.6 Article

Toxoplasma gondii apicoplast-resident ferredoxin is an essential electron transfer protein for the MEP isoprenoid-biosynthetic pathway

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 298, 期 1, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2021.101468

关键词

-

资金

  1. German Research Council (DFG)
  2. Federal Ministry of Education and Research (BMBF) [01KI1715]
  3. Robert Koch-Institute

向作者/读者索取更多资源

A study found that knocking down the ferredoxin protein in the parasite Toxoplasma gondii leads to impaired cellular metabolism, inhibited parasite growth, and eventually parasite death. This phenotype is not associated with changes in the apicoplast or overall cell morphology, but is related to a significant decrease in the levels of isoprenoid metabolites and impaired cellular motility. The findings suggest that ferredoxin could be a potential drug target for apicomplexan parasites.
Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context. We show here that inducible knockdown of T. gondii ferredoxin results in progressive inhibition of growth and eventual parasite death. Surprisingly, this phenotype is not accompanied by ultrastructural changes in the apicoplast or overall cell morphology. The knockdown of ferredoxin was instead associated with a dramatic decrease in cellular levels of the last two metabolites in isoprenoid biosynthesis, 1-hydroxy-2-methyl-2-(E)- butenyl-4-gyro phosphate, and isomeric dimethylallyl pyrophosphate/isopentenyl pyrophosphate. Ferredoxin depletion was also observed to impair gliding motility, consistent with isoprenoid metabolites being important for dolichol biosynthesis, protein prenylation, and modification of other proteins involved in motility. Significantly, pharmacological inhibition of isoprenoid synthesis of the host cell exacerbated the impact of ferredoxin depletion on parasite replication, suggesting that the slow onset of parasite death after ferredoxin depletion is because of isoprenoid scavenging from the host cell and leading to partial compensation of the depleted parasite metabolites upon ferredoxin knockdown. Overall, these findings show that ferredoxin has an essential physiological function as an electron donor for the 2C-methyl-D-erythritol 4-phosphate pathway and is a potential drug target for apicomplexan parasites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据