4.7 Article

Electrodeposited with FeOOH and MnO2 on laser-induced graphene for multi-assembly supercapacitors

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 893, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.162230

关键词

Ni-containing LIG; FeOOH; MnO2; Multi-assembly supercapacitors

资金

  1. National Natural Science Foundation of China [21775082, 22076090, 21775083]
  2. Research Foundation for Distinguished Scholars of Qingdao Agricultural University [663-1117018]

向作者/读者索取更多资源

The study demonstrated a two-step method to prepare integrated electrode materials for supercapacitors, leading to the successful fabrication of a device with high areal capacitance, energy density, and power density.
The performance of the electrode material for supercapacitor depends not only on its structure but also on the potential window. In this work, we have demonstrated a two-steps method to prepare the integrated electrode materials. Firstly, Ni@PES films are scribed at CO2 laser induction and Ni@PES-LIG is obtained. Secondly, the subsequent electrodeposition of FeOOH and MnO2 are carried out in three-electrode system. The MnO2/Ni@PES-LIG and FeOOH/Ni@PES-LIG electrodes exhibit high pseudocapacitances of 205 and 210 mF cm(-2), respectively. By using The MnO2/Ni@PES-LIG and FeOOH/Ni@PES-LIG electrodes as the anode and cathode, respectively, we have successfully fabricated the free-standing asymmetric supercapacitor (ASC) device, which has wider potential range over 2.0 V. The Ni@ASC device delivers high areal capacitance (110 mF cm(-2)), high areal energy density (41.6 mu Wh cm(-2)), and high areal power density (136 mW cm(-2)). Additionally, the Ni@ASC assembling with the integrated electrodes reveals a much higher capacitance and wider potential window than other single symmetric and asymmetric supercapacitors due to its multiple energy stored mechanisms. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据