4.7 Article

Enhancing the power factor of p-type BiSbTe films via deposited with/without Cr seed layer

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 886, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.161263

关键词

Cr seed layer; BiSbTe; Kelvin probe force microscopy; Power factor

向作者/读者索取更多资源

The thermoelectric effect is an efficient method for converting waste heat into electrical energy, with p-type BiSbTe thin films showing promise for future technological applications. Using chromium as an adhesion and seed layer can significantly enhance the electrical transport properties of BiSbTe films by controlling microstructure and transport properties.
The thermoelectric effect is an efficient method to use waste heat as a primary source of electrical energy. Being a room temperature thermoelectric thin film, p-type BiSbTe is one of the best candidates owing to the combined high efficiency and large power factor for future technological applications. Novel approaches have emerged in recent decades with the aim of enhancing the thermoelectric properties of BiSbTe thin films. The method involves using Cr as an adhesion and seed layer for controlling microstructure and transport properties via the energy filtering of high-energy carriers. The heterostructure of Cr/BiSbTe film demonstrates the best electrical transport performance, where the Seebeck coefficient and the electrical conductivity are 425 mu V/K and 25 S/m* 10(3) in the vicinity of room temperature. The power factor of Cr/BiSbTe was reported to be 6.8 mW/mK(2) at 375 K, which was approximately seven times higher than the film without the Cr layer. We conclude that the inclusion of the Cr seed layer can notably improve the electrical transport properties of p-type BiSbTe films. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据