4.7 Review

Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: a review

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 879, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.160453

关键词

Mg alloys; MAO; Corrosion resistance; Antibacterial; Biocompatibility; Bioactivity

资金

  1. Foundation of the Education Department of Liaoning Province in China [QN2019035]
  2. National Natural Science Foundation of Liaoning Province of China [2020MS166, 2019-MS-326]
  3. Natural Science Foundation of China [81500897]

向作者/读者索取更多资源

The review discusses the functionalization treatment of MAO coatings on Mg alloys, aiming to enhance their antibacterial properties, corrosion resistance, biocompatibility, and bioactivity. By incorporating antibacterial metallic elements and covering with biopolymer or calcium phosphate coatings, biofunctional MAO coatings with improved corrosion resistance can be achieved.
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Micro-arc oxidation and its protection for Mg alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Antibacterial MAO coatings on Mg alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1. Ag element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2. Cu element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3. Zn element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4. Surface modification of MAO coatings on Mg alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1. Crosslinked biopolymers: hydrogels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2. Non-crosslinked biopolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2.1. Chitosan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2.2. Poly-Lactic acid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2.3. Poly(lactide-co-glycolide) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Magnesium (Mg) alloys have become promising biomaterials due to their attractive biological and mechanical properties. However, the high corrosion rate has severely limited their wide applications in the clinical field. Micro-arc oxidation (MAO) is recognized as an effective surface treatment to enhance the corrosion resistance of Mg alloys. However, protective coatings will impair the antibacterial activity of Mg which is caused by the increase in pH value throughout its degradation. Besides, there exist abundant micro-pores and micro-cracks in the MAO coatings, which provide channels for aggressive medium to Mg substrates and thus accelerate their corrosion. By introducing antibacterial metallic elements such as silver (Ag), copper (Cu) and zinc (Zn) into the electrolyte, MAO coatings with enhanced antibacterial properties can be fabricated on Mg alloys. In addition, by covering the MAO coatings with biopolymer or calcium phosphate coatings, biofunctional MAO coatings with reinforced corrosion resistance can be obtained. This review mainly discussed the functionalization treatment of the MAO coatings on Mg alloys, including endowing MAO coatings with antibacterial properties, corrosion resistance, biocompatibility and bioactivity. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据