4.7 Article

Improvement in thermal stability and crystallization mechanism of Sm doped Ge2Sb2Te5 thin films for phase change memory applications

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 893, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.162316

关键词

Phase change; Glass transition temperature; Thermal stability; Crystallization

资金

  1. Science and Engineering Research Board (SERB) Department of Science and Technology (DST) of India [EMR/2016/006094]
  2. SERB-DST, New Delhi

向作者/读者索取更多资源

Thin films of (Ge2Sb2Te5)(100-x)Sm-x (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2) (Sm-GST) phase change material were studied to examine the chemical bonding, composition, morphology, thermal stability parameters, and crystallization activation energy. Results showed that Sm doping affects the thermal stability, glass-forming ability, and crystallization behavior of the thin films, potentially impacting the performance of memory devices.
The thin films of (Ge2Sb2Te5)(100-x)Sm-x (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2) (Sm-GST) phase change material have been investigated employing X-ray photoelectron spectroscopy (XPS) to examine the nature of chemical bonding in as-deposited thin films of Sm-GST. The composition of as-deposited thin films of Sm-GST has been also analyzed from the peak area ratios of XPS core-level spectra and the morphology of the thin film has been studied using field emission scanning electron microscopy (FESEM). The powder samples obtained from the as-deposited thin films have been utilized for the non-isothermal differential scanning calorimetry (DSC) measurements at the constant heating rate of 10 K/min. The values of glass transition temperature (T-g), onset crystallization (T-c), peak crystallization temperature (T-p) and melting temperature (T-m) obtained from DSC curves of Sm-GST thin films have been used for the evaluation of thermal stability parameters. The activation energy for crystallization (E-c) and avrami exponent (n) for fcc and hexagonal phase of Sm-GST thin films have been evaluated using Henderson's method and Matusita's method. The impact of Sm doping on the thermal stability, glass-forming ability and crystallization activation energy of as-deposited thin films have been examined and its possible influence on the memory device performance has been correlated. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据