4.7 Article

In-situ investigation on the deformation mechanism of duplex microstructure of a near α titanium alloy

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 893, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.162184

关键词

In-situ tensile; Electron probe micro analysis; Transmission electron microscopy; Deformation mechanism; Slip systems; Dislocation networks

资金

  1. National Major Science and Technology Project [J2019-VI-0005-0119]
  2. National Natural Science Foundation of China [51905436]
  3. Natural Science Foundation of Shaanxi province of China [2020JQ-156]
  4. Aeronautical Science Foundation of China [201911053001]

向作者/读者索取更多资源

The targeted research on equiaxed alpha particles and lamellar alpha colonies in the duplex microstructure of Ti60 alloy revealed that slip lines preferentially occur in equiaxed alpha particles during in-situ tensile tests. The prism slip of the (10 (1) over bar0) plane and [1 (2) over bar 10] direction is the most activated slip system in equiaxed alpha particles according to the calculation results of the movement slip system.
The targeted research of equiaxed alpha particles and lamellar alpha colonies in duplex microstructure of Ti60 alloy was conducted to more reveal the related mechanisms. For this purpose, in-situ tensile test, the electron probe microanalysis (EPMA), microhardness test, electron backscatter diffraction (EBSD), and Transmission Electron Microscopy (TEM) technologies were used to carry out relevant research in this work. The in-situ tensile result shows that the slip line preferentially occurs in the equiaxed alpha particle. Prism slip of the (10 (1) over bar0) plane and [1 (2) over bar 10] direction is the most activated slip system in the equiaxed alpha particle according to the calculation result of the movement slip system. Single slip was operated in individual equiaxed alpha particle, as the stress concentration at the grain boundary increases, multiple slips could be activated in the adjacent equiaxed alpha particle while the slip line was hardly found in colonies. With the deformation amount increases, pyramidal slip mode with high critical resolved shear stress (CRSS) in lamellar alpha had to be activated to accommodate the deformation. It is concluded from the in-situ tensile observation and EBSD analysis that the lamellar microstructure contributes less to the deformation at room temperature which is attributed to the large size of colonies and limited range of slip systems. Cracks nucleate mainly at the grain boundary of the equiaxed alpha particle and the colony since the existence of non-deformation area. TEM analysis shows that the dislocation networks were pinning by the silicide at the grain boundary of the equiaxed alpha particle, thus induces the stress concentration and promotes the crack nucleation. In addition, the blocking effect of the alpha(2)-Ti3Al particles on the dislocation was also found, indicating that the microcrack could nucleate within the equiaxed alpha particle. On this basis, two diverse crack initial modes of intergranular fracture at the grain boundary and transgranular with in the equiaxed alpha particle fracture were proposed. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据