4.7 Article

Martensitic phase transformation and shape memory properties of the as-cast NiCuTiHf and NiCuTiHfZr alloys

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 888, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.161534

关键词

Shape memory alloys (SMAs); Martensitic phase transformation; Shape memory strain; Superelasticity; Two-way shape memory effect

向作者/读者索取更多资源

This study investigates the structure, martensitic phase transformation behavior, and shape memory properties of quaternary and quinary Ni-Cu-Ti-Hf-Zr shape memory alloys in the as-cast state. Experimental results showed different shape memory performances among the alloys, with Ni44.8Cu5Ti45.2Hf5 alloy exhibiting the maximum shape memory strain of 6.2% and Ni45.5Cu5Ti39.5Hf5Zr5 alloy lacking the shape memory effect due to suppressed B2 ->B19' transformation.
This study investigates the structure, martensitic phase transformation behavior, and shape memory properties of the quaternary Ni44.8Cu5Ti45.2Hf5 and quinary Ni44.8Cu5Ti40.2Hf5Zr5 and Ni45.5Cu5Ti39.5Hf5Zr5 shape memory alloys (SMAs) in the as-cast state. The alloys exhibited a dual-phase microstructure com-posed of matrix phase (austenite or martensite depending on the chemical composition) and Ti2Ni-type phase. The experimental results revealed that the alloys underwent a one-step B2 -> B19' transformation. The Ni44.8Cu5Ti45.2Hf5 alloy showed a maximum shape memory strain of 6.2% with a recovery ratio of 81% upon thermal cycling under a tensile stress of 300 MPa, while in the Ni44.8Cu5Ti40.2Hf5Zr5 alloy, a maximum shape memory strain of about 5% was obtained under 500 MPa with a recovery ratio of 86%. The as-cast Ni44.8Cu5Ti45.2Hf5 alloy showed superelastic response with 0.3% maximum transformation strain at 125 degrees C. On the other hand, the Ni44.8Cu5Ti45.2Hf5 alloy showed the best superelastic response at 65 degrees C with a recoverable strain of about 1.9%. Two-way shape memory strains of 0.8% and 3.3% were obtained in the Ni44.8Cu5Ti45.2Hf5 and Ni44.8Cu5Ti40.2Hf5Zr5 alloys, respectively. The Ni45.5Cu5Ti39.5Hf5Zr5 alloy, however, did not reveal the shape memory effect. Results obtained from low-temperature X-ray diffraction (XRD) analysis indicated that the B2 -> B19' transformation was considerably suppressed in this alloy and the volume fraction of B19' martensite did not exceed 8% even at an ultra-low temperature of - 150 degrees C. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据