4.7 Article

Stabilization and Au sintering prevention promoted by ZnO in CeOx-ZnO porous nanorods decorated with Au nanoparticles in the catalysis of the water-gas shift (WGS) reaction

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 892, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.162179

关键词

Cerium oxide; Zinc oxide; Gold nanoparticle; Water-gas shift; Hierarchical nanostructure; Nanoporous

资金

  1. CNPq [465452/2014-0, 310131/2020-0]
  2. FAPESP [2013/22127-2, 2014/50906-9]

向作者/读者索取更多资源

The development of CeO2-based nanomaterials for catalysis has significantly grown in the past decade, with applications such as the water-gas shift reaction (WGSR) showing higher catalytical activity when combined with noble metal nanoparticles. This study designed a material for the catalysis of the WGSR, optimizing Au nanoparticle size and maintenance during catalysis to prevent the formation of undesired side products, achieving stable catalytic activity even at higher temperatures.
The development of CeO2-based nanomaterials for catalysis has seen considerable growth in the past decade, resulting of a combination of robust synthesis methods and its facile generation and regeneration of oxygen vacancy defects. Among its applications is the water-gas shift reaction (WGSR), used for purifying H-2 from steam-reforming sources, where CeO2 combined with noble metal nanoparticles such as Cu, Au and Pt can present higher catalytical activity when compared to typical Fe-based or Cu/ZnO catalysts. In this work we designed a material for the catalysis of the WGSR seeking to address issues commonly observed for CeO2-Au catalysts: the optimization of the Au nanoparticle (AuNP) size and its maintenance by preventing sintering during catalysis, as well as preventing the formation of undesired side products such as CH4 and CH3OH. Our strategy was to combine a well-known, facile and robust hydrothermal synthesis to obtain CeO2 porous nanorods, and then further expand the native pore structure via a simple acid lixiviation strategy to better accommodate Au nanoparticles. To prevent side product formation, we coated the CeO2 nanorods with ZnO via metalorganic impregnation-decomposition prior to AuNP deposition, based on its reported ability to prevent methanation. While the formation of side products was prevented both with and without ZnO, we observed that ZnO promoted control over the growth of AuNP, resulting in smaller nanoparticles of 1.8 nm when compared to the 2.5 nm obtained without ZnO, and also prevented their sintering during WGSR catalytical tests, granting the material stable catalytic activity even at higher temperatures of 400 and 450 degrees C. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据