4.7 Article

Lattice dynamics of high-pressure hydrides studied by inelastic neutron scattering

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 905, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.164208

关键词

Metal hydrides; High-pressure; Inelastic neutron scattering; Phonons; Heat capacity

资金

  1. Russian Foundation for Basic Research [20-02-00638]
  2. European Research Council (ERC) under the European Union [948895]
  3. Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy
  4. EU [778307]
  5. European Research Council (ERC) [948895] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Inelastic neutron scattering is an effective tool for studying optical vibrations of hydrogen atoms in metal hydrides. This review focuses on binary hydrides of 3d- and 4d-metals, providing spectral and temperature dependency data and discussing the interaction between metal and hydrogen.
Due to the small mass and anomalously large neutron scattering cross-section of proton (about 80 barns compared to a few barns for other nuclei), inelastic neutron scattering is considered as one of the most effective tools in studying optical vibrations of hydrogen atoms in metal hydrides. The current review is focused on the binary hydrides of 3d-and 4d-metals of groups VI-VIII, which were produced at high hydrogen pressures of several gigapascals in relatively large quantities of hundreds of mg, quenched to low temperature and studied by INS ex situ at ambient pressure with high statistical accuracy. One of the unusual effects revealed by INS is a strong increase in the strength of the metal-hydrogen interactions with decreasing atomic number of the d-metal accompanied by an increase in the Me-H distance. Based on the available experimental results, the spectra g(E) of the phonon density of states and temperature dependencies C-V(T) of the heat capacity at constant volume at T up to 1000 K have been derived in this paper and presented both in the figures and in digital form. This provides the reference data for the theoretical investigations of the crystal structures and compositions of new practically important hydrides giving the opportunity to validate calculation methods by comparing the calculated g(E) and C-V(T) with the accurate experimental dependencies for the binary hydrides. Recent INS studies showed [R.A. Klein et al., J. Alloy. Compd. 894 (2022) 162381] that the fingerprints of anomalously short H-H separations of 1.6 & ANGS; violating the 2 & ANGS; rule can be easily and unambiguously identified in the complex INS spectra of quaternary hydrides (La,Ce)NiInH1+x. This makes neutron spectroscopy an attractive means for obtaining valuable data in the search for novel hydrides with a record high hydrogen capacity. (C) 2022 The Authors. Published by Elsevier B.V. CC_BY_4.0

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据