4.7 Article

GNSS/Onboard Inertial Sensor Integration With the Aid of 3-D Building Map for Lane-Level Vehicle Self-Localization in Urban Canyon

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 65, 期 6, 页码 4274-4287

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2015.2497001

关键词

Global Navigation Satellite System (GNSS) positioning accuracy; Kalman filter; sensor integration; vehicle self-localization

向作者/读者索取更多资源

Lane-level vehicle self-localization is a challenging and significant issue arising in autonomous driving and driver-assistance systems. The Global Navigation Satellite System (GNSS) and onboard inertial sensor integration are among the solutions for vehicle self-localization. However, as the main source in the integration, GNSS positioning performance is severely degraded in urban canyons because of the effects of multipath and non-line-of-sight (NLOS) propagations. These GNSS positioning errors also decrease the performance of the integration. To reduce the negative effects caused by GNSS positioning error, this paper proposes to employ an innovative GNSS positioning technique with the aid of a 3-D building map in the integration. The GNSS positioning result is used as an observation, and this is integrated with the information from the onboard inertial sensor and vehicle speedometer in a Kalman filter framework. To achieve stable performance, this paper proposes to evaluate and consider the accuracy of the employed GNSS positioning method in dynamic integration. A series of experiments in different scenarios is conducted in an urban canyon, which can demonstrate the effectiveness of the proposed method using various evaluation and comparison processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据