4.7 Article

Dynamic responses in shocked Cu-Zr nanoglasses with gradient microstructure

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 149, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2021.103154

关键词

Nanoglasses; Gradient microstructure; Shock response; Spallation; Molecular dynamics

资金

  1. National Natural Science Foundation of China [12172056, 11972092, 12002049, 11802028, 11732003]

向作者/读者索取更多资源

Shock characteristics of nanoglasses with gradient microstructures were investigated using molecular dynamics simulations. The results showed that the gradient structure affects the shock wave profiles but not the shock wave speeds. The indirect free-surface method is still applicable for estimating spall strength.
Shock is one of the physical processes that materials are most likely to suffer during applications, therefore the elusive shock properties of nanoglasses are unacceptable. Additionally, establishing gradient microstructure is a promising approach to optimize mechanics properties further. Here, shock characteristics of Cu64Zr36 nanoglasses with gradient microstructures are systematically investigated by molecular dynamics simulations in the particle velocity range of 0.5 to 5 km/s. Two types of gradient nanoglasses (GNGs) along the shock direction are prepared and analyzed, i. e., a negative gradient structure (S1) in contrast with a positive gradient structure (S2). The results show that the number of mechanically stable < 0,0,12,0 > and < 0,1,10,2 > atomic Voronoi polyhedra, which are typical building blocks of the amorphous structure in terms of Voronoi tessellation method, in grain interfaces is significantly less than that in grain interiors. As a result, the local free volume gradually changes along the shock direction by the designed gradient structure, which causes a significant impact on the shock wave profiles of shear strain, stress, configurational entropy, and temperature in the GNGs. However, due to a similar chemically disordered feature in grain interiors and interfaces, the shock wave speeds of nanoglasses are not sensitive to grain sizes under the same shock strength, contrary to the usual shock wave speed mechanism in conventional polycrystalline. Thus, unlike traditional polycrystalline with grain size gradient, the indirect free-surface method of estimating spall strength is still applicable to the GNGs. Finally, the positive gradient structure results in lower temperature and free volume in the spall region, which causes the spall strengths of the S2 sample higher than those of the S1 sample.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据