4.7 Article

Improving the dissolution behaviors and bioavailability of abiraterone acetate via multicomponent crystal forms

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2022.121460

关键词

Abiraterone acetate; Cocrystal; Crystal structure; Dissolution; Bioavailability

向作者/读者索取更多资源

This study aimed to improve the solubility and bioavailability of abiraterone acetate (ABA). Various salts and cocrystals of ABA were successfully synthesized, with ABA-TAA cocrystal showing significant enhancements in solubility and intrinsic dissolution rates. Gelation was unexpectedly observed in ABA-MA salt and ABA-SAC salt in pH 2.0 buffer solution.
Abiraterone acetate (ABA), the first-line drug for the treatment of metastatic castration resistant prostate cancer (mCRPC), is administered at a high daily dosage of 1000 mg due to its poor solubility, and its fasted absolute oral bioavailability is estimated to be less than 10%. In this work we have focused on developing multicomponent forms with improved dissolution behaviors and bioavailability. Two salts of ABA with malonic acid (ABA-MA) and saccharin (ABA-SAC), and five cocrystals with trans-aconitic acid (ABA-TAA), 1-hydroxy-2-naphthoic acid (ABA-1HNA), pyrocatechol (ABA-PCA), resorcinol (ABA-RES) and hydroquinone (ABA-HDE) were successfully obtained. Their crystal structures were elucidated by single crystal X-ray diffraction, and these multicomponent forms were fully characterized by powder X-ray diffraction, thermal analysis and Fourier Transform Infrared spectra. Among them, ABA-TAA cocrystal shows substantial enhancements both in the solubility and intrinsic dissolution rates in different buffer solutions. In the meantime, we unexpectedly found the gelation of ABA-MA salt and ABA-SAC salt in pH 2.0 buffer solution. The gel-like materials generated on the surface of drug will suppress the release of ABA. Moreover, in vivo pharmacokinetic study on beagle dogs was conducted for ABATAA cocrystal preparation and ABA commercial product, and ABA-TAA cocrystal preparation shows enhanced absorption. These advantages in dissolution behaviors and bioavailability demonstrate the potential of ABA-TAA cocrystal to be a better candidate for the treatment of mCRPC compared with ABA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据