4.7 Article

Constitutively Activating Mutants of Equine LH/CGR Constitutively Induce Signal Transduction and Inactivating Mutations Impair Biological Activity and Cell-Surface Receptor Loss In Vitro

期刊

出版社

MDPI
DOI: 10.3390/ijms221910723

关键词

eLH/CGR; constitutively activating mutation; inactivating mutation; cAMP response; cell-surface loss of receptor

资金

  1. Korean Research Foundation Program [2021R1A2B01001602]
  2. National Institute of Fisheries Science, Korea [R2021023]
  3. Institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries (iPET), Republic of Korea [R2021023] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Different mutations of the equine lutropin/choriogonadotropin receptor exhibit distinct characteristics in signal transduction and cell-surface receptor loss, with activating mutants increasing cAMP response and inducing receptor loss, while inactivating mutants completely impair signal transduction.
The signal transduction of the equine lutropin/choriogonadotropin receptor (eLH/CGR) is unclear in naturally occurring activating/inactivating mutants of this receptor, which plays an important role in reproductive physiology. We undertook the present study to determine whether conserved structurally related mutations in eLH/CGR exhibit similar mechanisms of signal transduction. We constructed four constitutively activating mutants (M398T, L457R, D564G, and D578Y) and three inactivating mutants (D405N, R464H, and Y546F); measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary cells; and investigated cell-surface receptor loss using an enzyme-linked immunosorbent assay in human embryonic kidney 293 cells. The eLH/CGR-L457R-, -D564G-, and -D578Y-expressing cells exhibited 16.9-, 16.4-, and 11.2-fold increases in basal cAMP response, respectively. The eLH/CGR-D405N- and R464H-expressing cells presented a completely impaired signal transduction, whereas the Y546F-expressing cells exhibited a small increase in cAMP response. The cell-surface receptor loss was 1.4- to 2.4-fold greater in the activating-mutant-expressing cells than in wild-type eLH/CGR-expressing cells, but was completely impaired in the D405N- and Y546F-expressing cells, despite treatment with a high concentration of agonist. In summary, the state of activation of eLH/CGR influenced agonist-induced cell-surface receptor loss, which was directly related to the signal transduction of constitutively activating mutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据