4.7 Article

GmLecRlk, a Lectin Receptor-like Protein Kinase, Contributes to Salt Stress Tolerance by Regulating Salt-Responsive Genes in Soybean

期刊

出版社

MDPI
DOI: 10.3390/ijms23031030

关键词

soybean; GmLecRlk; lectin receptor protein kinase; salt tolerance; RNA-seq

向作者/读者索取更多资源

Soybean gene GmLecRlk was found to be responsive to salt stress and highly expressed in soybean roots. Overexpression of GmLecRlk in soybean enhanced fresh weight, proline content, and catalase activity, while reducing malondialdehyde and H2O2 content under salt stress. GmLecRlk improved salt tolerance in soybean by regulating the expression of other genes.
Soybean [Glycine max (L.) Merr.] is an important oil crop that provides valuable resources for human consumption, animal feed, and biofuel. Through the transcriptome analysis in our previous study, GmLecRlk (Glyma.07G005700) was identified as a salt-responsive candidate gene in soybean. In this study, qRT-PCR analysis showed that the GmLecRlk gene expression level was significantly induced by salt stress and highly expressed in soybean roots. The pCAMBIA3300-GmLecRlk construct was generated and introduced into the soybean genome by Agrobacterium rhizogenes. Compared with the wild type (WT), GmLecRlk overexpressing (GmLecRlk-ox) soybean lines had significantly enhanced fresh weight, proline (Pro) content, and catalase (CAT) activity, and reduced malondialdehyde (MDA) and H2O2 content under salt stress. These results show that GmLecRlk gene enhanced ROS scavenging ability in response to salt stress in soybean. Meanwhile, we demonstrated that GmLecRlk gene also conferred soybean salt tolerance when it was overexpressed alone in soybean hairy root. Furthermore, the combination of RNA-seq and qRT-PCR analysis was used to determine that GmLecRlk improves the salt tolerance of soybean by upregulating GmERF3, GmbHLH30, and GmDREB2 and downregulating GmGH3.6, GmPUB8, and GmLAMP1. Our research reveals a new mechanism of salt resistance in soybean, which exposes a novel avenue for the cultivation of salt-resistant varieties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据