4.7 Article

Investigating the Molecular Mechanisms of Renal Hepcidin Induction and Protection upon Hemoglobin-Induced Acute Kidney Injury

期刊

出版社

MDPI
DOI: 10.3390/ijms23031352

关键词

kidney; iron; hepcidin; acute kidney injury; hemoglobin

向作者/读者索取更多资源

Hemolysis can cause acute kidney injury, and the iron regulatory hormone hepcidin plays a protective role during this process. The synthesis of renal hepcidin is induced by iron and hemin through the Nrf2 pathway. Kidney-specific mechanisms of hepcidin regulation exist, highlighting the complexity of iron regulatory mechanisms during AKI.
Hemolysis is known to cause acute kidney injury (AKI). The iron regulatory hormone hepcidin, produced by renal distal tubules, is suggested to exert a renoprotective role during this pathology. We aimed to elucidate the molecular mechanisms of renal hepcidin synthesis and its protection against hemoglobin-induced AKI. In contrast to known hepatic hepcidin induction, incubation of mouse cortical collecting duct (mCCD(cl1)) cells with IL-6 or LPS did not induce Hamp1 mRNA expression, whereas iron (FeS) and hemin significantly induced hepcidin synthesis (p < 0.05). Moreover, iron/heme-mediated hepcidin induction in mCCD(cl1) cells was caused by the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, as indicated by increased nuclear Nrf2 translocation and induced expression of Nrf2 downstream targets GCLM (p < 0.001), NQO1 (p < 0.001), and TXNRD1 (p < 0.005), which could be prevented by the known Nrf2 inhibitor trigonelline. Newly created inducible kidney-specific hepcidin KO mice demonstrated a significant reduction in renal Hamp1 mRNA expression. Phenylhydrazine (PHZ)-induced hemolysis caused renal iron loading and oxidative stress in both wildtype (Wt) and KO mice. PHZ treatment in Wt induced inflammatory markers (IL-6, TNF alpha) but not Hamp1. However, since PHZ treatment also significantly reduced systemic hepcidin levels in both Wt and KO mice (both p < 0.001), a dissection between the roles of systemic and renal hepcidin could not be made. Combined, the results of our study indicate that there are kidney-specific mechanisms in hepcidin regulation, as indicated by the dominant role of iron and not inflammation as an inducer of renal hepcidin, but also emphasize the complex interplay of various iron regulatory mechanisms during AKI on a local and systemic level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据