4.7 Article

On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin-Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer-Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy

期刊

出版社

MDPI
DOI: 10.3390/ijms23010041

关键词

bovine serum albumin; surfactants; binding properties; steady-state fluorescence spectroscopy; fluorescence quenching

资金

  1. Polish National Science Centre [2016/23/D/ST4/01576]

向作者/读者索取更多资源

This study investigated the interactions between different types of surfactants and bovine serum albumin. The fluorescence intensity of the protein decreased when surfactants were added, and the quenching mechanism was analyzed using the Stern-Volmer equation. The binding efficiency and mode of interactions were evaluated by determining the binding constants and thermodynamic parameters. The study also explored the influence of surfactant structure and environmental conditions on the binding mode and interaction strength.
Due to the fact that surfactant molecules are known to alter the structure (and consequently the function) of a protein, protein-surfactant interactions are very important in the biological, pharmaceutical, and cosmetic industries. Although there are numerous studies on the interactions of albumins with surfactants, the investigations are often performed at fixed environmental conditions and limited to separate surface-active agents and consequently do not present an appropriate comparison between their different types and structures. In the present paper, the interactions between selected cationic, anionic, and nonionic surfactants, namely hexadecylpyridinium chloride (CPC), hexadecyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyethylene glycol sorbitan monolaurate, monopalmitate, and monooleate (TWEEN 20, TWEEN 40, and TWEEN 80, respectively) with bovine serum albumin (BSA) were studied qualitatively and quantitatively in an aqueous solution (10 mM cacodylate buffer; pH 5.0 and 7.0) by steady-state fluorescence spectroscopy supported by UV spectrophotometry and CD spectroscopy. Since in the case of all studied systems, the fluorescence intensity of BSA decreased regularly and significantly under the action of the surfactants added, the fluorescence quenching mechanism was analyzed thoroughly with the use of the Stern-Volmer equation (and its modification) and attributed to the formation of BSA-surfactant complexes. The binding efficiency and mode of interactions were evaluated among others by the determination, comparison, and discussion of the values of binding (association) constants of the newly formed complexes and the corresponding thermodynamic parameters (Delta G, Delta H, Delta S). Furthermore, the influence of the structure of the chosen surfactants (charge of hydrophilic head and length of hydrophobic chain) as well as different environmental conditions (pH, temperature) on the binding mode and the strength of the interaction has been investigated and elucidated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据