4.7 Article

Pulsed Electric Fields Alter Expression of NF-κB Promoter-Controlled Gene

期刊

出版社

MDPI
DOI: 10.3390/ijms23010451

关键词

microsecond pulsed electric field; inducible gene transcription control; reporter assay; secreted alkaline phosphatase; mammalian cells; cell line; NF-kappa B

资金

  1. ERDF [1.1.1.2/VIAA/4/20/739]

向作者/读者索取更多资源

The possibility to artificially adjust and fine-tune gene expression is a major milestone in bioengineering, synthetic biology, and advanced medicine. Pulsed electric field technology has shown potential as a noninvasive and adjustable gene regulator, capable of altering gene expression in mammalian cells without significant damage.
The possibility to artificially adjust and fine-tune gene expression is one of the key milestones in bioengineering, synthetic biology, and advanced medicine. Since the effects of proteins or other transgene products depend on the dosage, controlled gene expression is required for any applications, where even slight fluctuations of the transgene product impact its function or other critical cell parameters. In this context, physical techniques demonstrate optimistic perspectives, and pulsed electric field technology is a potential candidate for a noninvasive, biophysical gene regulator, exploiting an easily adjustable pulse generating device. We exposed mammalian cells, transfected with a NF-kappa B pathway-controlled transcription system, to a range of microsecond-duration pulsed electric field parameters. To prevent toxicity, we used protocols that would generate relatively mild physical stimulation. The present study, for the first time, proves the principle that microsecond-duration pulsed electric fields can alter single-gene expression in plasmid context in mammalian cells without significant damage to cell integrity or viability. Gene expression might be upregulated or downregulated depending on the cell line and parameters applied. This noninvasive, ligand-, cofactor-, nanoparticle-free approach enables easily controlled direct electrostimulation of the construct carrying the gene of interest; the discovery may contribute towards the path of simplification of the complexity of physical systems in gene regulation and create further synergies between electronics, synthetic biology, and medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据