4.7 Article

Modulation of Cellular NAD+ Attenuates Cancer-Associated Hypercoagulability and Thrombosis via the Inhibition of Tissue Factor and Formation of Neutrophil Extracellular Traps

期刊

出版社

MDPI
DOI: 10.3390/ijms222112085

关键词

cancer-associated thrombosis; NAD(+); dunnione; tissue factor; NETs

向作者/读者索取更多资源

This study reveals that regulating cellular NAD(+) levels can alleviate thrombosis in tumor-bearing mice, potentially serving as a viable therapeutic approach for cancer-associated thrombosis.
Cancer-associated thrombosis is the second-leading cause of mortality in patients with cancer and presents a poor prognosis, with a lack of effective treatment strategies. NAD(P)H quinone oxidoreductase 1 (NQO1) increases the cellular nicotinamide adenine dinucleotide (NAD(+)) levels by accelerating the oxidation of NADH to NAD(+), thus playing important roles in cellular homeostasis, energy metabolism, and inflammatory responses. Using a murine orthotopic 4T1 breast cancer model, in which multiple thrombi are generated in the lungs at the late stage of cancer development, we investigated the effects of regulating the cellular NAD(+) levels on cancer-associated thrombosis. In this study, we show that dunnione (a strong substrate of NQO1) attenuates the prothrombotic state and lung thrombosis in tumor-bearing mice by inhibiting the expression of tissue factor and formation of neutrophil extracellular traps (NETs). Dunnione increases the cellular NAD(+) levels in lung tissues of tumor-bearing mice to restore the declining sirtuin 1 (SIRT1) activity, thus deacetylating nuclear factor-kappa B (NF-kappa B) and preventing the overexpression of tissue factor in bronchial epithelial and vascular endothelial cells. In addition, we demonstrated that dunnione abolishes the ability of neutrophils to generate NETs by suppressing histone acetylation and NADPH oxidase (NOX) activity. Overall, our results reveal that the regulation of cellular NAD(+) levels by pharmacological agents may inhibit pulmonary embolism in tumor-bearing mice, which may potentially be used as a viable therapeutic approach for the treatment of cancer-associated thrombosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据