4.7 Article

nMechanical behavior simulation of particulate-filled composite at meso-scale by numerical manifold method

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2021.106846

关键词

Particulate-filled composite; Numerical manifold method; Deformation and fracture; Strain rate and temperature; Damage evolution equation; Constitutive model

向作者/读者索取更多资源

Particulate-filled composite (PFC) is a complex multi-phase material, and it is difficult to reveal its deformation and damage mechanism using traditional macro-scale methods. The study used the numerical manifold method to simulate the meso-scale mechanical response of PFC, analyzed the damage morphology evolution of PFC, derived macroscopic equivalent damage evolution equations, and discussed the effects of loading levels on mechanical properties. Two categories of constitutive models were proposed to describe the macroscopic equivalent mechanical behavior of PFC.
Particulate-filled composite (PFC) is a kind of mixed multi-phase material with the grains highly embedded in the binders with ratio higher than 90%. Its good mixture capacity with the binder, in particulate or fibre form, leads to composite materials with intermediate properties that result from the combined action of the constituents. Due to the complexity of PFC meso-scopic composition and loading levels, it is difficult to reveal the deformation and damage mechanism of composites by traditional phenomenological macro-scale methods. In the present work, based on the PFC meso-structures with highly-filled grains, the numerical manifold method is utilized to simulate the meso-scale mechanical response of PFC at different loading levels. The effects of strain rates and temperatures on the meso damage morphology of PFC are studied. The damage evolution laws caused by interfacial debonding and micro-cracks in the meso structure are analyzed. Based on their isotropic assumption, the macroscopic equivalent damage evolution equations caused by these meso-scale damages are derived, respectively. The effects of loading levels on the mechanical characteristic parameters (such as modulus, failure strength, ultimate strain, etc.) are also discussed quantitatively. The specific mathematical expressions of the strain rate and temperature dependent properties under uniaxial tension/compression are statistically obtained. Two categories of constitutive models of coupling damage evolution equation with Johnson-cook and generalized Maxwell model are proposed to describe the macroscopic equivalent mechanical behavior of PFC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据