4.7 Article

A mesoscale study of micro-spallation of Cu through coarse-grained molecular dynamics modeling

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2022.107122

关键词

Shock; Molecular dynamics; Coarse-grained model; Micro-spallation; Strain rate effects

资金

  1. Foundation of the National Key Laboratory of Shock Wave and Detonation Physics of China [6142A03201001]
  2. China Postdoctoral Science Foundation [2021M700512]

向作者/读者索取更多资源

This study investigates the micro-spallation process of copper using a computationally efficient coarse-grained molecular dynamics (CGMD) method. The CGMD method is capable of reproducing results obtained by classical molecular dynamics (MD) method and provides consistent predictions of spall damage in copper. This method allows for the investigation of micro-spallation of copper at the mesoscale.
Micro-spallation in metals is a complex dynamic fragmentation process accompanied by shock-induced overheating and melting. However, the damage evolution involved in this process, as well as the underlying mechanism, remain poorly understood. Here, a computationally efficient coarse-grained molecular dynamics (CGMD) method is used to study the micro-spallation of Cu. We demonstrate the capability of this method to reproduce results obtained by the classical molecular dynamics (MD) method in predicting spall damage of solid Cu under shock loading. CGMD simulations, however, give a higher spall strength and a later nucleation time compared with MD simulations, owing to the higher stress required to create collective voids in the former compared with the smaller individual voids in the latter. By contrast, the calculated values (including those of the compressive pressure, strain rate, and spall strength) and the predictions of microstructural evolution during micro-spallation of Cu obtained from CGMD simulations are in good agreement with those from MD simulations. This is attributed to the temperature immediately before spallation being sufficiently high for a strong shock to exist with a dominant effect on spallation, such that the collective motion of voids in CGMD simulations has a negligible effect on spall strength. A dependence of the spall strength on the strain rate of liquid Cu is proposed. This CGMD method allows the investigation of micro-spallation of Cu at the mesoscale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据