4.7 Article

Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijimpeng.2021.104008

关键词

High-entropy alloy; Split Hopkinson tensile bar; Strain rate effect; Dislocation; Twin

资金

  1. National Key Research and Development Program of China [2017YFB0702003]
  2. NSFC [11790292, 11972346, 11672316]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB22040302, XDB22040303]
  4. Key Research Program of Frontier Sciences of the Chinese Academy of Sciences [QYZDJSSW-JSC011]
  5. Science Challenge Project [TZ2018001]
  6. NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics [11988102]

向作者/读者索取更多资源

This paper reveals the unusual simultaneous strength-plasticity enhancement and high strain rate embrittlement inhibition of CrMnFeCoNi HEA in impact tension through split Hopkinson tensile bar (SHTB) testing and high-speed photography. Microstructural analysis shows that the cooperation of twins and dislocations is the crucial mechanism for the synchronous enhancement of strength-plasticity in this alloy under impact tension. A thermo-viscoplastic constitutive model based on dislocations and twins evolution was developed to describe the dynamic mechanical behavior of HEAs at high strain rates.
High-entropy alloys (HEAs), recently emerging alloy materials with numerous excellent performances, may have a wide application prospect in impact engineering. However, previous research regarding the mechanical behavior of HEAs has primarily focused on quasi-static testing, whereas the dynamic mechanical behavior of HEAs at high strain rates remains elusive. In this paper, the unusual simultaneous strength-plasticity enhancement and the inhibition of the high strain rate embrittlement of CrMnFeCoNi HEA in impact tension were revealed via split Hopkinson tensile bar (SHTB) with high-speed photography. Quantitative microstructural analysis indicates that the cooperation of twins and dislocations is the crucial mechanism for the synchronous enhancement of strength-plasticity in this alloy under impact tension. A thermo-viscoplastic constitutive model based on dislocations and twins evolution was developed to describe dynamic mechanical behavior. The high plastic hardening under dynamic tension was revealed to be induced by high dislocation forest hardening and strong resistance of twins to dislocation motion. The excellent combination of dynamic strength-plasticity of CrMnFeCoNi HEA makes it becoming a promising candidate for impact engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据