4.7 Article

Hydrogen wettability of clays: Implications for underground hydrogen storage

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 46, 期 69, 页码 34356-34361

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.07.226

关键词

Hydrogen wettability; Underground hydrogen storage; Montmorillonite; Illite; Kaolinite; Clay wettability

向作者/读者索取更多资源

This study investigates the wetting ability of hydrogen on clay surfaces in the presence of brine. It found that all clay surfaces exhibited water-wetting behavior, which is beneficial for the injection and retrieval of hydrogen. However, the predominant water wettability of clays may lead to biogeochemical reactions and affect porosity and permeability.
This study investigates the ability of hydrogen (H-2) to wet clay surfaces in the presence of brine, with implications for underground hydrogen storage in clay-containing reservoirs. Rather than measuring contact angles directly with hydrogen gas, a suite of other gases (carbon dioxide (CO2), argon (Ar), nitrogen (N-2), and helium (He)) were employed in the gas-brine-clay system under storage conditions (moderate temperature (333 K) and high pressures (5, 10, 15, and 20 MPa)), characteristic of a subsurface environment with a shallow geothermal gradient. By virtue of analogies to H-2 and empirical correlations, wettabilities of hydrogen on three clay surfaces were mathematically derived and interpreted. The three clays were kaolinite, illite, and montmorillonite and represent 1:1, 2:1 non-expansive, and 2:1 expansive clay groups, respectively. All clays showed water-wetting behaviour with contact angles below 40 degrees under all experimental set-ups. It follows that the presence of clays in the reservoir (or caprock) is conducive to capillary and/or residual trapping of the gas. Another positive inference is that any tested gas, particularly nitrogen, is suitable as cushion gas to maintain formation pressure during hydrogen storage because they all turned out to be more gas-wetting than hydrogen on the clay surfaces; this allows easier displacement and/or retrieval of hydrogen during injection/production. One downside of the predominant water wettability of the clays is the upstaged role of biogeochemical reactions at the wetted brine-clay/silicate interface and their potential to affect porosity and permeability. Water-wetting decreased from kaolinite as most water-wetting clay over illite to montmorillonite as most hydrogen-wetting clay. Their wetting behaviour is consistent with molecular dynamic modelling that establishes that the accessible basal plane of kaolinite's octahedral sheet is highly hydrophilic and enables strong hydrogen bonds whereas the same octahedral sheet in illite and montmorillonite is not accessible to the brine, rendering these clays less water-wetting. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据