4.7 Article

Fluoride etched Ni-based electrodes as economic oxygen evolution electrocatalysts

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 47, 期 3, 页码 1613-1623

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.10.127

关键词

Oxygen evolution reaction; Nickel foam; Metal etching; Electrocatalysts; Fluoride; Water oxidation

资金

  1. Swiss National Science Foundation [CRSII2_160801/1]
  2. University of Zurich Research Priority Program for Solar Light to Chemical Energy Conversion (URPP LightChEC)
  3. University of Zurich [FK-18-106]

向作者/读者索取更多资源

The study presents a facile and scalable etching method for constructing fluoride-doped metallic nickel-based anodes with high application potential for large-scale hydrogen production setups. The optimized catalysts display promising overpotential and competitive performance compared to noble metal-based reference catalysts. The etching of electrode surface in fluoride medium leads to decreased resistivity and notably enhanced performance towards electrochemical oxygen evolution reaction.
Electrochemical water splitting is a promising technology for eco-friendly energy storage. However, the design principles for highly active, robust, and noble metal-free electrocatalysts for industrial-scale hydrogen production remain controversial. Oxygen-free compounds containing anionic species with a very high oxidation potential, such as fluorides, have emerged as high-performance targets for thermodynamically stable oxygen evolution reaction (OER) catalysts. They can further be designed to fit the key criteria of high electrical conductivity and stability. Herein, we present a facile and scalable etching method for constructing fluoride doped metallic nickel-based anodes from industrial Ni foam sources with high application potential for large-scale hydrogen production setups. The fluoride-etched Ni-catalysts were investigated with a wide range of techniques, such as powder X-ray diffraction (PXRD), extended X-ray absorption fine structure spectroscopy (EXAFS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). Optimized catalysts displayed a promising overpotential of 220 mV for the OER at a current density of 60 mA cm(-2), which is competitive with noble metal-based reference catalysts, such as iridium oxide. Electrochemical impedance spectroscopy (EIS) studies demonstrated that etching of the electrode surface in fluoride medium leads to a drastic decrease of Rct. The corresponding decreased resistivity towards electrochemical OER on the electrode surface gives rise to the notably enhanced performance, with a minimum of synthetic effort. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据